

# Bone Scan Index (BSI) – A Nuclear Medicine Imaging Biomarker in Metastatic Prostate Cancer



# Bone Scan Index (BSI) – A Nuclear Medicine Imaging Biomarker in Metastatic Prostate Cancer

Lars Edenbrandt

MD, Professor

Medical & Scientific Director, Exini Diagnostics AB



## Bone Scan Index (BSI) – A Nuclear Medicine Imaging Biomarker in Metastatic Prostate Cancer

- 13:00 Introduction
  - Prof. Lars Edenbrandt, Medical and Scientific Director, EXINI Diagnostics AB, Sweden.
- 13:10 What is BSI? Its History and Technique Clinical Prof. Kenichi Nakajima, Department of Nuclear Medicine, Kanazawa University, Japan.
- 13:20 BSI as an Analytically Validated Imaging Modality

  Dr. Aseem Anand, Clinical Medicine Research, University of Lund, Sweden.
- 13:30 BSI in Clinical Routine

  Dr. Jens Kurth, Department of Nuclear Medicine, University of Rostock, Germany.
- 13:40 Clinical Impact of BSI Clinical Prof. Atsushi Mizokami, Department of Urology, Kanazawa University, Japan.
- 13:50 Clinical Utility of BSI in Sweden Prof. Anders Bjartell, Department of Urology, Skåne University Hospital, Sweden.
- 14:00 Round Up and Q&A
  Clinical Prof. Kenichi Nakajima, Prof. Lars Edenbrandt



### Bone Scan Index (BSI) -

## A Nuclear Medicine Imaging Biomarker in Metastatic Prostate Cancer

metastatic burden in bone

http://bonescanindex.org



# Bone Scan Index (BSI) – A Nuclear Medicine Imaging Biomarker in Metastatic Prostate Cancer

#### Biomarker -

A characteristic that is **objectively** measured and evaluated as an indicator of

- normal biological processes,
- pathogenic processes, or
- pharmacologic responses to a therapeutic intervention.

The biomarker definitions working group of the National Institutes of Health



#### Clinical need – Imaging

Diagnostic imaging is an important part of the evaluation of patients with for example known or suspected cancer

- diagnosis
- prognosis
- treatment response

•

•



#### Clinical need – Biomarkers

Personalized medicine – tailoring medical treatment to the individual characteristics, needs and preferences of each patient

Biomarkers – useful tools in the decision-making process for personalized treatment



#### Clinical need – Imaging

The European Society of Cardiology recommends that patients with stable angina or silent ischemia with "proven large area of ischemia (>10%)" should receive revascularization



European Heart Journal (2010) 31, 2501-2555 doi:10.1093/eurheartj/ehq277







#### Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Developed with the special contribution of the European Association for Percutaneous Cardiovascular Interventions (EAPCI)<sup>‡</sup>

Authors/Task Force Members: William Wijns (Chairperson) (Belgium)\*, Philippe Kolh (Chairperson) (Belgium)\*, Nicolas Danchin (France), Carlo Di Mario (UK), Volkmar Falk (Switzerland), Thierry Folliguet (France), Scot Garg (The Netherlands),

| Table 8   | Indications for revascularization in stable |
|-----------|---------------------------------------------|
| angina or | silent ischaemia                            |

|                 | Subset of CAD by anatomy                                                         | Classa | Levelb | Ref.c            |
|-----------------|----------------------------------------------------------------------------------|--------|--------|------------------|
| For prognosis   | Left main >50% <sup>d</sup>                                                      | - 1    | A      | 30, 31,<br>54    |
|                 | Any proximal LAD >50% <sup>d</sup>                                               | - 1    | A      | 30–37            |
|                 | 2VD or 3VD with impaired LV function <sup>d</sup>                                | - 1    | В      | 30–37            |
|                 | Proven large area of ischaemia<br>(>10% LV)                                      | - 1    | В      | 13, 14,<br>38    |
|                 | Single remaining patent vessel >50% stenosis <sup>d</sup>                        | - 1    | С      |                  |
|                 | IVD without proximal LAD and without >10% ischaemia                              | Ш      | A      | 39, 40,<br>53    |
| For<br>symptoms | Any stenosis >50% with limiting angina or angina equivalent, unresponsive to OMT | ı      | A      | 30, 31,<br>39–43 |
|                 | Dyspnoea/CHF and >10% LV ischaemia/viability supplied by >50% stenotic artery    | Ha     | В      | 14, 38           |
|                 | No limiting symptoms with OMT                                                    | Ш      | С      | _                |

<sup>a</sup>Class of recommendation.

<sup>b</sup>Level of evidence.



### Problem – Imaging Report



not "objectively measured"

Trägårdh et al. EJNMMI Research 2012, 2:27 http://www.ejnmmires.com/content/2/1/27



#### **ORIGINAL RESEARCH**

**Open Access** 

Referring physicians underestimate the extent of abnormalities in final reports from myocardial perfusion imaging

Elin Trägårdh<sup>1\*</sup>, Peter Höglund<sup>2</sup>, Mattias Ohlsson<sup>3</sup>, Mattias Wieloch<sup>4</sup> and Lars Edenbrandt<sup>1</sup>

#### Abstract

**Background:** It is important that referring physicians and other treating clinicians properly understand the final reports from diagnostic tests. The aim of the study was to investigate whether referring physicians interpret a final



#### Solution – Imaging Biomarker



Biomarker candidates extent, SDS, ....

Trägårdh et al. EJNMMI Research 2012, **2**:27 http://www.ejnmmires.com/content/2/1/27



#### **ORIGINAL RESEARCH**

**Open Access** 

Referring physicians underestimate the extent of abnormalities in final reports from myocardial perfusion imaging

Elin Trägårdh<sup>1\*</sup>, Peter Höglund<sup>2</sup>, Mattias Ohlsson<sup>3</sup>, Mattias Wieloch<sup>4</sup> and Lars Edenbrandt<sup>1</sup>

#### Abstract

**Background:** It is important that referring physicians and other treating clinicians properly understand the final reports from diagnostic tests. The aim of the study was to investigate whether referring physicians interpret a final



## **Imaging – Opportunity**





#### Imaging – Problem

How to incorporate information from imaging reports with other data





### Imaging – Solution an Imaging Biomarker

Bone Scan Index

5 year survival probability

0.7

2.2

8.1

42%

31%

0%



5 year survival probability for all patients with bone metastases 24%



## BSI – A Nuclear Medicine Imaging Biomarker in Metastatic Prostate Cancer

It is time to be quantitative in our image analysis of cancer patients

BSI is an **objectively measured** quantitative expression of skeletal tumour burden as seen on bone scans

=

Imaging Biomarker



## Bone Scan Index (BSI) – A Nuclear Medicine Imaging Biomarker in Metastatic Prostate Cancer

- 13:00 Introduction
  - Prof. Lars Edenbrandt, Medical and Scientific Director, EXINI Diagnostics AB, Sweden.
- 13:10 What is BSI? Its History and Technique Clinical Prof. Kenichi Nakajima, Department of Nuclear Medicine, Kanazawa University, Japan.
- 13:20 BSI as an Analytically Validated Imaging Modality

  Dr. Aseem Anand, Clinical Medicine Research, University of Lund, Sweden.
- 13:30 BSI in Clinical Routine

  Dr. Jens Kurth, Department of Nuclear Medicine, University of Rostock, Germany.
- 13:40 Clinical Impact of BSI Clinical Prof. Atsushi Mizokami, Department of Urology, Kanazawa University, Japan.
- 13:50 Clinical Utility of BSI in Sweden Prof. Anders Bjartell, Department of Urology, Skåne University Hospital, Sweden.
- 14:00 Round Up and Q&A
  Clinical Prof. Kenichi Nakajima, Prof. Lars Edenbrandt